Implementasi Range Of Motion (ROM) Pasif pada Klien CVA Infrak dengan Masalah Keperawatan Intoleransi Aktivitas di Ruang Bedah Saraf RSD Kalisat Jember
DOI:
https://doi.org/10.47134/phms.v1i4.60Keywords:
CVA infark, Intoleransi Aktivitas, Range of motion (ROM)Abstract
CVA Infark ialah gejala sindrom klinis yang disebabkan oleh penyempitan atau jaringan nekrotik otak, sehingga mengurangi ketersediaan oksigen dan darah ke otak berkurang yang mungkin berakhir dengan infark jika aliran darah tidak dipulihkan dengan cepat. Metode: Desain penelitian ini menggunakan pendekatan fase study. Hasil: Tujuan studi kasus ini yaitu untuk meningkatkan kekuatan otot pada klien CVA dengan penerapan Range Of Motion (ROM) di RSD Kalisat. Studi kasus ini menggunakan metode deskriptif dengan mengambil 2 klien CVA infark dengan intoleransi aktivitas. Latihan Range Of Motion (ROM) dilakukan dalam 1 kali sehari selama 5-8 kali . Temuannya yaitu meningkatan kekuatan otot ekstremitas baik pada klien 1 dan klien 2. Kesimpulan: berdasarkan pelakasanan asuhan keperawatan yang telah dilakukan penulis pada Tn. S dan Tn. S dengan masalah keperawatan Intoleransi Aktivitas d ruang bangau RSD Kalisat Jember pada tanggal 06-08 Februari 2022 dan 13- 15 Februari 2023 tindakan Range Of Motion (ROM) meningkatkan mobilitas fisik klien dengan masalah keperawatan intoleransi aktivitas dapat dilakukan dengan baik dan benar.
References
Amy, N. R. A. M. (2021). Studi Kasus Hambatan Mobilitas Fisik Pada Klien Stroke Infark di Rumah Sakit Umum Daerah Sidoarjo. Frontiers in Neuroscience, 14(1), 1–13.
Chen, S. (2018). Highly stretchable fiber-shaped e-textiles for strain/pressure sensing, full-range human motions detection, health monitoring, and 2D force mapping. Journal of Materials Science, 53(4), 2995–3005. https://doi.org/10.1007/s10853-017-1644-y
Chu, Z. (2021). Superhydrophobic gradient wrinkle strain sensor with ultra-high sensitivity and broad strain range for motion monitoring. Journal of Materials Chemistry A, 9(15), 9634–9643. https://doi.org/10.1039/d0ta11959h
Díaz, S. (2020). Use of wearable sensor technology in gait, balance, and range of motion analysis. Applied Sciences (Switzerland), 10(1). https://doi.org/10.3390/app10010234
Ding, C. (2019). Continuous human motion recognition with a dynamic range-doppler trajectory method based on FMCW Radar. IEEE Transactions on Geoscience and Remote Sensing, 57(9), 6821–6831. https://doi.org/10.1109/TGRS.2019.2908758
Gao, Y. (2020). A multi-model, large range and anti-freezing sensor based on a multi-crosslinked poly(vinyl alcohol) hydrogel for human-motion monitoring. Journal of Materials Chemistry B, 8(48), 11010–11020. https://doi.org/10.1039/d0tb02250k
Ike, N. (2022). Dengan Stroke Iskemik di Ruang Saphier Muhammadiyah Pontianak Tahun 2022.
Jang, J. (2020). Mechanoluminescent, Air-Dielectric MoS2 Transistors as Active-Matrix Pressure Sensors for Wide Detection Ranges from Footsteps to Cellular Motions. Nano Letters, 20(1), 66–74. https://doi.org/10.1021/acs.nanolett.9b02978
Karimah, R. (2020). Asuhan Keperawatan Yang Akurat Dan Efektif Pada Klien Yang Mengalami CVA Infark Dengan Hambatan Fisik Mobilitasi Di Ruang Krisan Rumah Sakit Umum Daerah Bangil Kabupaten Pasuruan.
Keener, J. D. (2018). Optimizing reverse shoulder arthroplasty component position in the setting of advanced arthritis with posterior glenoid erosion: a computer-enhanced range of motion analysis. Journal of Shoulder and Elbow Surgery, 27(2), 339–349. https://doi.org/10.1016/j.jse.2017.09.011
Keogh, J. W. L. (2019). Reliability and validity of clinically accessible smartphone applications to measure joint range of motion: A systematic review. PLoS ONE, 14(5). https://doi.org/10.1371/journal.pone.0215806
Kleeblad, L. J. (2018). Larger range of motion and increased return to activity, but higher revision rates following unicompartmental versus total knee arthroplasty in patients under 65: a systematic review. Knee Surgery, Sports Traumatology, Arthroscopy, 26(6), 1811–1822. https://doi.org/10.1007/s00167-017-4817-y
Ma, J. (2019). Highly Sensitive and Large-Range Strain Sensor with a Self-Compensated Two-Order Structure for Human Motion Detection. ACS Applied Materials and Interfaces, 11(8), 8527–8536. https://doi.org/10.1021/acsami.8b20902
Matheve, T. (2019). Lumbar range of motion in chronic low back pain is predicted by task-specific, but not by general measures of pain-related fear. European Journal of Pain (United Kingdom), 23(6), 1171–1184. https://doi.org/10.1002/ejp.1384
Mega, S. (2021). Karya Tulis Ilmiah Asuhan Keperawatan Pada Ny. M Dengan Gangguan Mobilitas Fisik Pada Diagnosa Medis CVA Infark di Desa Kepel Bugul Kidul Pasuruan. http://eprints.kertacendekia.ac.id/id/eprint/553/1/KTI%20MEGA%20SILFIA%201801071.pdf
Miyamoto, N. (2018). Associations of passive muscle stiffness, muscle stretch tolerance, and muscle slack angle with range of motion: Individual and sex differences. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-26574-3
Näf, M. B. (2018). Passive back support exoskeleton improves range of motion using flexible beams. Frontiers Robotics AI, 5. https://doi.org/10.3389/frobt.2018.00072
Oosterwijk, A. (2018). Shoulder and elbow range of motion for the performance of activities of daily living: A systematic review. Physiotherapy Theory and Practice, 34(7), 505–528. https://doi.org/10.1080/09593985.2017.1422206
Paul, S. J. (2021). Ultrasensitive Wearable Strain Sensors based on a VACNT/PDMS Thin Film for a Wide Range of Human Motion Monitoring. ACS Applied Materials and Interfaces, 13(7), 8871–8879. https://doi.org/10.1021/acsami.1c00946
Pu, J. H. (2020). A strain localization directed crack control strategy for designing MXene-based customizable sensitivity and sensing range strain sensors for full-range human motion monitoring. Nano Energy, 74. https://doi.org/10.1016/j.nanoen.2020.104814
Reinold, M. (2018). Effect of a 6-Week Weighted Baseball Throwing Program on Pitch Velocity, Pitching Arm Biomechanics, Passive Range of Motion, and Injury Rates. Sports Health, 10(4), 327–333. https://doi.org/10.1177/1941738118779909
Sochacki, K. R. (2019). Superior Capsular Reconstruction for Massive Rotator Cuff Tear Leads to Significant Improvement in Range of Motion and Clinical Outcomes: A Systematic Review. Arthroscopy - Journal of Arthroscopic and Related Surgery, 35(4), 1269–1277. https://doi.org/10.1016/j.arthro.2018.10.129
Sun, L. (2019). Ionogel-based, highly stretchable, transparent, durable triboelectric nanogenerators for energy harvesting and motion sensing over a wide temperature range. Nano Energy, 63. https://doi.org/10.1016/j.nanoen.2019.06.043
Thomas, E. (2018). The Relation between Stretching Typology and Stretching Duration: The Effects on Range of Motion. International Journal of Sports Medicine, 39(4), 243–254. https://doi.org/10.1055/s-0044-101146
Vu, C. C. (2020). Highly elastic capacitive pressure sensor based on smart textiles for full-range human motion monitoring. Sensors and Actuators, A: Physical, 314. https://doi.org/10.1016/j.sna.2020.112029
Walmsley, C. P. (2018). Measurement of Upper Limb Range of Motion Using Wearable Sensors: A Systematic Review. Sports Medicine - Open, 4(1). https://doi.org/10.1186/s40798-018-0167-7
Wilke, J. (2020). Acute Effects of Foam Rolling on Range of Motion in Healthy Adults: A Systematic Review with Multilevel Meta-analysis. Sports Medicine, 50(2), 387–402. https://doi.org/10.1007/s40279-019-01205-7
Wulan, N. (2016). Asuhan Keperawatan Pada Ny. A Dengan Non Hemoragik Stroke Hemiparese Sinistra Dalam Pemenuhan Kebutuhan Aktivitas di Ruang Anggrek 3 RSU Aliyah 1 Kota Kendari. 1–23.
Yang, P. (2022). Monitoring the Degree of Comfort of Shoes In-Motion Using Triboelectric Pressure Sensors with an Ultrawide Detection Range. ACS Nano, 16(3), 4654–4665. https://doi.org/10.1021/acsnano.1c11321
Zheng, Y. (2021). Conductive MXene/cotton fabric based pressure sensor with both high sensitivity and wide sensing range for human motion detection and E-skin. Chemical Engineering Journal, 420. https://doi.org/10.1016/j.cej.2020.127720
Downloads
Published
How to Cite
License
Copyright (c) 2023 Health & Medical Sciences

This work is licensed under a Creative Commons Attribution 4.0 International License.