Bioremediation of Petrol Engine Oil Contaminated Soils With Pyoverdine From Pseudomonas Putida

Authors

  • Sata Kathum Ahmed Ajjam Department of Chemical Engineering University of Babylon, Hillah, Iraq

DOI:

https://doi.org/10.47134/pslse.v2i2.334

Keywords:

Pyoverdine, Pseudomonas Putida, Engine Oil

Abstract

The poisoning of aquatic and subterranean habitats by petroleum and its compounds is one of the most alarming environmental issues. This work proposes the use of Pseudomonas spp. for the degrading treatment of petroleum engine oil. An isolated bacterial strain from soils affected by engine oil, Pseudomonas putida, was able to manufacture pyoverdine with a higher productivity level of 18.8%. With the use of Sepharose 4B activated with epichlorhydrin the pyoverdine was isolated. It eluted as two isoforms in two peaks. The degradation of gasoline engine oil with purified pyoverdine increased over time, reaching its maximum level after nine days. As time increased, the degradation level decreased, suggesting that using microbial products as biological alternatives could be a more economical and effective way to reduce pollutants and conserve natural resources.

References

Akbar, S. and Stevens, D.C. (2021). Functional genomics study of Pseudomonas putida to determine traits associated with avoidance of a myxobacterial predator. Sci Rep., 11:16445.

Bala, S., Garg, D., Thirumalesh, B. V., Sharma, M., Sridhar, K., Inbaraj, B. S. and Tripathi, M. (2022). Recent Strategies for Bioremediation of Emerging Pollutants: A Review for a Green and Sustainable Environment, Toxics, 10:484-489.

Barrientos-Moreno, L., Molina-Henares, M.A., Pastor-García, M., Ramos-González, M.I. and Espinosa-Urgel, M. (2019). Arginine Biosynthesis Modulates Pyoverdine Production and Release in Pseudomonas putida as Part of the Mechanism of Adaptation to Oxidative Stress. J. Bacteriol., 201:10.

Cai , Y. Y., Wang, R. K., Rao, P. H., Wu, B. C., Yan, L. L., Hu, L. J., Park, S., Ryu, M. and Zhou, X. Y. (2021). Bioremediation of Petroleum Hydrocarbons Using Acinetobacter sp. SCYY-5 Isolated from Contaminated Oil Sludge: Strategy and Effectiveness Study. Int. J. Environ. Res. Public Health, 18:819.

Chen, M., Xu, P., Zeng, G., Yang, C., Huang, D. and Zhang, J. (2015). Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: applications, microbes and future research needs. Biotechnol. Adv.,33 (6 Pt 1):745-55.

Das, D. N. and Ravi, N. (2022). Influences of polycyclic aromatic hydrocarbon on the epigenome toxicity and its applicability in human health risk assessment, Environ. Res., 3: 12-17.

Dell’Anno, F.; Vitale, G.A.; Buonocore, C.; Vitale, L.; Palma Esposito, F.; Coppola, D.; Della Sala, G.; Tedesco, P.; de Pascale, D. (202). Novel Insights on Pyoverdine: From Biosynthesis to Biotechnological Application. Int. J. Mol. Sci., 23:11507.

Gamalero, E., Fracchia, L., Cavaletto, M., Garbaye, J., Frey-Klett, P., Varese, G.C. and Martinotti, M.G. (2003). Characterization of functional traits of two fluorescent Pseudomonads isolated from basidiomes of ectomycorrhizal fungi. Soil Biolog. Biochem. 35:55-65.

Gamalero, E., Fracchia, L., Cavaletto, M., Garbaye, J., Frey-Klett, P., Varese, G.C. and Martinotti, M.G. (2003). Characterization of functional traits of two fluorescent Pseudomonads isolated from basidiomes of ectomycorrhizal fungi. Soil Biolog. Biochem. 35:55-65.

Goveas, L. C., Nayak, S. and Selvaraj, R.(2022). Concise review on bacterial degradation of petroleum hydrocarbons: Emphasis on Indian marine environment, Bioresour. Technol. Rep., 19:101136.

Goveas, L. C., Nayak, S. and Selvaraj, R.(2022). Concise review on bacterial degradation of petroleum hydrocarbons: Emphasis on Indian marine environment, Bioresour. Technol. Rep., 19:101136.

Himps, S.D., Mobley, H.L.T. (2019). Siderophore Detection Using Chrome Azurol S and Cross-Feeding Assays. Methods Mol Biol.;2021: 97-108.

Jankiewicz, U. and Kuzawińska, O. (2009). Purification and Partial Characterization of Pyoverdine synthesized By Pseudomonas putida, EJPAU, 12(1):11-17.

Khalid, F. E., Lim, Z. S., Sabri, S., Gomez-Fuentes, C., Zulkharnain, A. and Ahmad, S. A. (2021). Bioremediation of Diesel Contaminated Marine Water by Bacteria: A Review and Bibliometric Analysis, J. Mar. Sci. Eng., 9:155.

Khalid, F. E., Lim, Z. S., Sabri, S. Gomez-Fuentes, C., Zulkharnain, A. and Ahmad, S. A. (2021). Bioremediation of Diesel Contaminated Marine Water by Bacteria: A Review and Bibliometric Analysis, J. Mar. Sci. Eng., 9:155.

Louden, B.C.; Haarmann, D. and Lynne, A.M. (2011). Use of blue agar CAS Assay for siderophore Detection. Journal of Microbiol. & Biology Edu., 3:51-53.

Meyer, J.M. and Abdallah, M.A. (2007). The fluorescent pigment of Pseudomonas fluorescens: Biosynthesis, purification and physicochemical properties. J. Gen. Microbiol., 107: 319–32.

Rehman, K., Imran, A., Amin, I. and Afzal, M. (2018). Inoculation with bacteria in floating treatment wetlands positively modulates the phytoremediation of oil field wastewater, J. Hazard. Mater., 349:242 -251.

Salari, M., Rahmanian, V., Hashemi, S. A., Chiang, W. H., Lai, C. W., Mousavi, S. M. and Gholami, A.(2022). Bioremediation Treatment of Polyaromatic Hydrocarbons for Environmental Sustainability. Water; 14(23):3980.

Salari, M., Rahmanian, V., Hashemi, S. A., Chiang, W. H., Lai, C. W., Mousavi, S. M. and Gholami, A.(2022). Bioremediation Treatment of Polyaromatic Hydrocarbons for Environmental Sustainability. Water; 14(23):3980.

Saha, M., Sarkar, S., Sarkar, B., Sharma, B. K., Bhattacharjee, S. and Tribedi, P. (2016). Microbial siderophores and their potential applications: a review, Environ. Sci. Pollut. Res., 23: 3984 -3999.

Santos, J.V.O.; Ferreira, Y.L.A.; Silva, L.L.S.; de Lyra, I.M.; Palácio, S.B.; Cavalcanti, I.M.F. (2018). Use of bioremediation for the removal of petroleum hydrocarbons from the soil: an overview. International Journal of Environment, Agriculture and Biotechnology (IJEAB), 3(5):201-209.

Su, S.S.; Lae, K.Z. and Ngwe, H. (2018). Isolation and Identification of Pseudomonas aeruginosa from the Clinical Soil. University of Yangon Research J., 8:271-275.

Schywn, B.; Neilands, J.B. (2009).Universal chemical assay for the detection and determination of siderophores. Anal. Biochem., 160:47–56.

Xiao, G.R. and Kisaalita, W.S. (2012). Purification of Pyoverdines of Pseudomonas fluorescens 2-79 by Copper-Chelate Chromatography. Applied and Environmental Microbiology, 61(11):33-38.

Xiao, R. and Kisaalita, W.S. (1995). Purification of pyoverdines of Pseudomonas fluorescens 2-79 by Copper-Chelate Chromatography. Appl. Environ. Microbiol. 61:3769-3774.

Xie, W., Yao, Z., Yang, H., Sun, C. and Li, X. (2018). Pseudomonas aeruginosa L10: A Hydrocarbon-Degrading, Biosurfactant-Producing, and Plant-Growth-Promoting Endophytic Bacterium Isolated From a Reed (Phragmites australis). Front Microbiol., 25(9):1087.

Zannotti, M., Ramasamy, K.P., Loggi, V., Vassallo, A., Pucciarelli, S. and Giovannetti, R. (2023). Hydrocarbon degradation strategy and pyoverdine production using the salt tolerant Antarctic bacterium Marinomonas sp. ef1. RSC Adv.;13(28):19276-19285.

Downloads

Published

2025-01-07

How to Cite

Ajjam, S. (2025). Bioremediation of Petrol Engine Oil Contaminated Soils With Pyoverdine From Pseudomonas Putida. Physical Sciences, Life Science and Engineering, 2(2), 10. https://doi.org/10.47134/pslse.v2i2.334

Issue

Section

Articles