Review Perumusan Teori Kapasitas Panas Einstein-Debye Menggunakan Integral Lintasan Feynman
DOI:
https://doi.org/10.47134/pslse.v2i1.321Keywords:
Einstein-Debye Theory, Path Integrals, SolidsAbstract
Teori Einstein-Debye memberikan deskripsi mekanika kuantum tentang kalor jenis zat padat, khususnya pada suhu rendah. Secara tradisional, teori ini telah dirumuskan menggunakan kuantisasi mode getaran dalam kisi kristal. Dalam artikel ini, kami menyajikan formulasi teori Einstein-Debye dengan menggunakan integral lintasan Feynman. Formulasi ini memberikan gambaran yang lebih mendalam tentang mekanika statistik kuantum getaran kisi, yang menawarkan kerangka kerja terpadu untuk memperoleh kalor jenis zat padat. Dengan menggunakan integral lintasan, kami mengeksplorasi kontribusi berbagai mode getaran dan pengaruhnya terhadap sifat termodinamika zat padat, yang memberikan perspektif baru tentang model Einstein dan Debye dalam satu teori yang koheren.
References
Altland, A., & Simons, B. (2023). Condensed Matter Field Theory (3rd ed.). Cambridge University Press. https://doi.org/10.1017/9781108781244
Baggioli, M., & Zaccone, A. (2021). Explaining the specific heat of liquids based on instantaneous normal modes. Physical Review E, 104(1), 014103. https://doi.org/10.1103/PhysRevE.104.014103
Balcerzak, T., Szałowski, K., & Jaščur, M. (2010). A simple thermodynamic description of the combined Einstein and elastic models. Journal of Physics: Condensed Matter, 22(42), 425401. https://doi.org/10.1088/0953-8984/22/42/425401
Çopuroğlu, E., & Özgül, D. (2024). Theoretical Investigation for Interpreting Heat Capacity of Thermoelectric Materials Using Debye–Einstein Approximation. Russian Physics Journal, 67(7), 1073–1081. https://doi.org/10.1007/s11182-024-03217-x
Doğan, Z., & Mehmetoğlu, T. (2019). Accurate Calculations of the Heat Capacities of Pure Metals Using the Einstein–Debye Approximation. Journal of Engineering Physics and Thermophysics, 92(6), 1620–1624. https://doi.org/10.1007/s10891-019-02082-7
Griffiths, D. J., & Schroeter, D. F. (2018). Introduction to Quantum Mechanics (3rd ed.). Cambridge University Press. https://doi.org/10.1017/9781316995433
Hatfield, B. (2018). Quantum field theory of point particles and strings. CRC Press, Taylor & Francis Group. https://doi.org/10.1201/9780429493232
Joghlaf, M., Ababou, Y., & Sayouri, S. (2023). An Accurate Alternative Method to Introduce Mixed Einstein–Debye Model for Molar Heat Capacity and the Exact Analytical Integral-Free Solution to Its Resulting Integration. International Journal of Applied and Computational Mathematics, 9(6), 137. https://doi.org/10.1007/s40819-023-01618-z
Kittel, C. (2005). Introduction to solid state physics (8th ed). Wiley.
Mehmetoglu, T. (2019). Use of Einstein-Debye method in the analytical and semi empirical analysis of isobaric heat capacity and thermal conductivity of nuclear materials. Journal of Nuclear Materials, 527, 151827. https://doi.org/10.1016/j.jnucmat.2019.151827
Patterson, J. D., & Bailey, B. C. (2007). Solid State Physics: Introduction to the Theory. Springer-Verlag Springer e-books.
Xu, C.-R., Shao, L., Ding, N., Jiang, H.-H., & Tang, B.-Y. (2024). Study of thermal properties of TiCN by Debye Einstein model, Debye Grüneisen model and quasiharmonic approximation. Physica B: Condensed Matter, 674, 415589. https://doi.org/10.1016/j.physb.2023.415589
Muy, S. (2021). Phonon–Ion Interactions: Designing Ion Mobility Based on Lattice Dynamics. Advanced Energy Materials, 11(15), ISSN 1614-6832, https://doi.org/10.1002/aenm.202002787
Douglas, J.F. (2016). Localization model description of diffusion and structural relaxation in glass-forming Cu-Zr alloys. Journal of Statistical Mechanics: Theory and Experiment, 2016(5), ISSN 1742-5468, https://doi.org/10.1088/1742-5468/2016/05/054048
Dehaoui, A. (2015). Viscosity of deeply supercooled Water and its coupling to molecular diffusion. Proceedings of the National Academy of Sciences of the United States of America, 112(39), 12020-12025, ISSN 0027-8424, https://doi.org/10.1073/pnas.1508996112
Abdulagatov, I.M. (2015). Thermal-Diffusivity and Heat-Capacity Measurements of Sandstone at High Temperatures Using Laser Flash and DSC Methods. International Journal of Thermophysics, 36(4), 658-691, ISSN 0195-928X, https://doi.org/10.1007/s10765-014-1829-4
Schmuck, M. (2015). Homogenization of the Poisson-Nernst-Planck equations for ion transport in charged porous media. SIAM Journal on Applied Mathematics, 75(3), 1369-1401, ISSN 0036-1399, https://doi.org/10.1137/140968082
Turton, D.A. (2014). Stokes-Einstein-Debye failure in molecular orientational diffusion: Exception or rule?. Journal of Physical Chemistry B, 118(17), 4600-4604, ISSN 1520-6106, https://doi.org/10.1021/jp5012457
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Arifin Achmad, Muflihatun, Rizqi Fadli

This work is licensed under a Creative Commons Attribution 4.0 International License.