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Abstract: This work is part of the development of algorithms and digital tools for the 

tomographic reconstruction of the (3D) temperature field from images resulting from 

thermal metrology based on two optical techniques (Moire deflectometry and holographic 

interferometry). It is intended not only for digital scientists and image processing 

specialists but also for researchers and practitioners in instrumentation and measurement 

by non-invasive techniques in general and in thermal metrology by optical techniques in 

particular  Tomography by optical techniques of axisymmetric transparent media, the 

main subject of application of this thesis, is a perfect example of an imaging system based 

on an elementary mathematical property (the Abel transform and its inverse in this case). 

This property comes up against in its practical application the hypersensitivity to noise 

and problems due to the intrinsic characteristics of this transform. However, the study of 

transparent media such as air in our case, which does not present any radiative, absorption 

or diffusion properties, makes the images resulting from optical techniques unusable only 

after a treatment which precedes the inverse calculation of the Abel transform. This 

treatment thus limiting the development of 3D imaging requires special attention. 

Furthermore, the tomographic reconstruction of the temperature field of such an 

environment will be done in two processing parts, the first of which will focus on the 

analysis of mud figures, while the second is dedicated to solving the inverse problem 

generated by the Abel transform. 

 

Keywords: Fringe Image Processing Algorithms, Tomographic Reconstruction, 

Temperature Field, Axisymmetric Medium 

 

Introduction 

We discuss the process of extracting the phase-encoded in the synthetic fringe patterns, 

This process is referred to in the jargon of digital scientists as fringe analysis, Generally, this 

process involves two steps, the first of which is the extraction of the phase itself. The second 

step will focus on the possible unfolding of this phase. 

We will pay special attention to the different algorithms for extracting the wavelet crest, 

which is necessary to measure the phase from optical images. Three algorithms are 

considered: the direct maximum algorithm, the Liu algorithm, the cost function algorithm, 

and the Marseille Group algorithm to find the most adequate and robust algorithm. Then, 
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we dissect the phase unfolding problem To do this, four algorithms are tested and compared, 

namely the Itoh 1D algorithm, the Itoh 2D algorithm, the Goldstein 2D algorithm and the 

Arevalillo Herráez algorithm (Liu, 2024b). 

All the algorithms presented in this extension are programmed under Matlab. Their 

validation was judged by considering the two quality criteria, namely the PSNR and/or the 

MES. 

Literature Review 
We have chosen to test the algorithms that we develop in this chapter on an image of 

synthetic fringes The phase that is at the origin of these fringes is calculated numerically 

using a two-dimensional analytical expression This procedure is widely used in the 

literature for the numerical validation of algorithms for fringe analysis (Liu, 2020). 

Moreover, this choice spares us from the complexity and the high cost of simulations in 

realistic configurations (Sharma, 2024). 

In principle, one can simulate a fringe pattern from any two-dimensional distribution 

representing the phase shift in interferometry or the deflection angles in moiré 

deflectometry It is sufficient simply to formulate a mathematical expression for these 

quantities in the form of a function of two variables Thus, we consider as an example the 

following analytical expression: 
φ(y,z) = 3(1 - y)²exp[-y²(z+ 1)²] 

-10(y/5 -y³-z5) exp(-y²-z²) 

exp[-(y+1)²-z²]            (1) ⅓ - 

Figure 1. illustrates the graphical representation of the distribution of (y, z) according to a sampling of 512x512 

pixels 

 

Figure 1. Theoretical phase image sampled at 512x512 pixels. 

 

We inject expression (1) as a phase term into the fringe equation I(y, z) which we recall here: 

I(y,z) = Im (y,z) + V(y, z) cos [2πv0y + φ(y, z)]       (2) 
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Figure 2. Synthetic fringes with Im = 0, V = 1, v0 = 0.08. 

 

The result of this calculation gives the fringe image shown in Figure 2. 

Figure 3. shows the same fringe image but this time affected by multiplicative speckle noise 

with an average grain size of 5 x 5 pixels. 

 

 

 

 

 

 

 

Figure 3. Noisy fringe image 

Methodology 

The analysis of an optical image with a view to reconstructing the temperature field 

which gave rise to it begins first of all with the extraction of the phase. 

This step is composed of a sequence of mathematical and numerical operations The 

precision and speed of the phase measurement are closely linked to the choice of algorithms 

and their parameters (Federico, 2021). 

Figure 4 illustrates the sequence of all the operations and algorithms that can be used to 

arrive at the distribution of the unknown phase, Our goal through the following story is to 

find and justify the best procedure for the processing of an optical image by the wavelet 

transform technique (Liu, 2024a). 
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Figure 4. Illustrative flowchart for fringe analysis 

 

Calculation of scalograms 

To better illustrate how this approach works, consider Figure 5, which plots the intensity on 

line 400 of the simulated fringe image (Figure 2). 

 

 

 

 

 

 

 

 

 

Figure 5. Intensity profile 1(y, z = 400). 
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After calculating the wavelet transform of this line, we can easily access the two amplitude 

and phase scalograms (Figure III-6). We have chosen to work with the complex Morlet 

wavelet, which is commonly used. 

 

 

 
Figure 6. Images (a) and (b) represent respectively the scalogram of the modules and the scalogram of 

arguments. 

 

The wavelet crest profile can easily be observed on the scalogram of the modules (Figure 

6a) in the form of a clear band. The calculation of the TO can be interpreted as a calculation 

of the correlation coefficients between the signal and the different daughter wavelets (Junne, 

2024). These coefficients take values in the module as large as the daughter wavelet, and a 

portion of the signal is similar (light area on the modulus scalogram). In other words, the 

TO modulus is maximal when a daughter wavelet has an analysis frequency very close to 

the local frequency of the signal. This causes the appearance of a peak that gives access to 

the variations of the phase and frequency of the signal (Bracewell, 2000) 

Estimation of the wavelet crest 

In a fringe analysis process using TO, the detection of the wavelet crest is a crucial step 

For this purpose, we will implement and test three algorithms, namely: the direct maximum 

algorithm, the Liu algorithm, and the Marseille Group algorithm Their reliability will be 

evaluated by considering the PSNR quality criteria for each algorithm (Chan, 2021). 

Direct maximum algorithm 

Test on a noise-free image 

This algorithm is quite simple to program. The extraction of the set of points forming 

the wavelet crest is done at the level of the scalogram of the modules (Figure ба) We 

determine the coordinates (aC,b) of the maximum value of each column in the module 

matrix as illustrated in Figure 7 (Maddah, 2024). The value of the corresponding phase is 

extracted from the argument matrix by a simple identification. The repetition of these two 
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operations on all the columns of the module matrix allows us to draw the profile (Figure 8a) 

of the folded phase ((Dribinski, 2020) 

 In order to demodulate the entire fringe image, this process will be repeated for all the 

lines Appendix (B) represents the implementation of the MD algorithm. The result is a map 

of the folded phase represented in 256 grey levels, as shown in Figure 8 b. To qualitatively 

ensure the result obtained, we recalculated the fringes by introducing the phase of the 

folded phase in formula (2). The result of this operation is illustrated in Figure III-8 e, which 

is a faithful duplicate of the initial fringe image (Figure 2) 

 This qualitatively demonstrates the ability of the MD algorithm to demodulate the 

simulated fringe pattern without noise (Choi, 2024). 

 

 

 
Figure 7. Profile of the variation of the values of the tenth column of the TO amplitude scalogram 

 

 

 

Figure 8. (a) Folded phase corresponding to the intensity line z 400. (b) mapping of the folded phase. (c) 

image of the fringes reconstructed from the folded phase. 
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Test on a noisy image 

To show the limitations of this algorithm, we this time use the noisy fringe image in 

Figure 3. The result of the fringe demodulation by the MD algorithm is illustrated in Figure 

9. Overall, the recalculated image is sharper than the noisy image in Figure 3. We can then 

understand the ability of the TO technique to filter the fringes and overcome the effects of 

speckle noise (Lv, 2024).  

However, we observe in some areas singular points on the fringes appearing in the form 

of stripes (areas circled in red in Figure 9) These points correspond to the best correlation of 

the daughter wavelets with the noise instead of the sought signal The MD algorithm, which 

only detects the absolute maximum, does not allow to bypass these singular points. 

Consequently, a more selective algorithm of the points forming the peak proves to be more 

adequate (Ignjatovic et al, 2019). 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 9. Image of the recalculated fringes showing some areas of singular points. 

 

Liu's algorithm 

Wavelet crest detection using dynamic programming by minimizing the cost function 

was introduced by Liu, The objective is to correct the anomalies inherent in the systematic 

application of the absolute maximum search algorithm to estimate the wavelet crest The 

solution proposed by Liu is to consider jointly with the absolute maximum all the relative 

maxima of the modulus of the wavelet transform To fix the ideas, let us apply this algorithm 

on line 400 of the noisy interferogram represented by Figure 3 

All the results of this example are illustrated in Figure 11 For each candidate likely to be 

part of the peak, we evaluate the cost function or "cost," whose expression is the following: 

(Asaki et al, 2019). 

Cost[f(b),b] = - ∫b {Sm[f(b),b] }² db +∫b [df(b) / db]² ad           (1.3) 
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where f is a function describing the evolution of the scales a as a function of the 

translation parameter bet Sm[f(b),b] is the module value of the TO to the candidate (f(b), b) 

The choice between the relative maximums of the TO module of the column considered will 

be made by looking for the value ac(b) for which the function Cost[f(b), b] is minimal. 

The discretization of equation (3) with a step ∆b =1 allows us to arrive at the following 

simplified expression (Chamaco, 2019). 

Cost(n, b + 1) = minm(cost(m, b)- {SM[f(m), b + 1]}² + [n-m]²}           (1.4) 

where n and m represent two indices which respectively scan the positions of the relative 

maxima of column b and column b + 1. 

 

 
Figure 10. Intensity profile (z = 400) of the fringe image (Figure 3) 
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Figure 11. (a) intensity profile on the line z = 400. (c) Amplitude scalogram. (d) Argument scalogram. (e) 

Scale evolution profile for column b = 10 where the maxima are indicated by circular patterns. (f) The folded 

phase profile of the line z = 400. (j) Folded phase map. (h) Image of the recalculated fringes . 

 

We start by determining the candidates that will form the peak using the Matlab 

findpeaks function The result of this operation applied to the example treated is given in 

Table 1 for the coordinates (f(b), b) and in the table for the SM[f(b), b] modules (Goharkhaha 

et al, 2020). 

Then, we proceed to calculate the cost function for each candidate to draw up the tables 

(Table 1 & Table 2) The last step consists in identifying the candidate and therefore the point 

of the sought peak giving rise to the minimum cost on each column (see the values in bold 

and italics in Table 3).  

All the steps necessary for the implementation of Liu's algorithm are illustrated in 

Appendix (B). 

Table 1. Coordinates of the candidate for the formation of the ridge . 

 

 

 

Table 2. Values of relative maxima . 
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Table 3. Costs relative to all candidates to form the crest. 

 

- 
Marseille Group Algorithm 

Like the moduli scalogram, the second space-frequency representation of the wavelet 

transform is also exploitable This idea was first proposed by Delpar and implemented in 

the form of an algorithm called the Marseille Group algorithm, The latter is based on the 

fact that when the frequency f = fc/a of the analyzing daughter wavelet Ψa,b is close to the 

frequency fs of the signal, then the rate of variation of the phase of the ТО  ∂ΦΨ(a,b)/∂Φ 

coincides with f for the points of the scalogram of the arguments belonging to the crest The 

steps of this algorithm are illustrated in Appendix (B).[ 10 ](Zhong et al, 2019) 

The computations are initialized by a scale value ap A new frequency f₁ is then 

determined by calculating the quantity ∂ΦΨ(a0,b)/∂d The corresponding scale value a₁ = 

f0/f₁ is then used to find f2 = ∂ΦΨ(a1,b)/∂Φ.  

The computations are stopped when the relative error |ai+1 - ai l/ai| between two 

successive iterations i and i + 1 becomes less than the fixed tolerance. Once fs (b) has been 

found, the algorithm continues at point b +1 with this time a, fc/fs (b) Taking as an example 

the noise-free image (Figure 2), the estimation of the peak using the Marseille Group 

algorithm is illustrated in Figure 12, representing the scalogram of the arguments. The plot 

of this estimated peak on the scalogram of the modules allows us to detect a clear shift in 

relation to its position visually marked by a light band (see Figure 12 b). (Jackson et al, 2021). 

 

 

 

 

 

 

 

 

 

 

 



Physical Sciences, Life Science and Engineering  Volume: 2, Number 1, 2024 11 of 24 

 

 

https://digital-science.pubmedia.id/index.php/pslse 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 12. (a) Scalogram of the TO arguments. (b) Scalogram of the modules showing the crest.  (c)

 .Reconstructed fringe image 

Result and Discussion 

In order to perform a quantitative comparison between the three demodulation 

algorithms, we calculated the PSNR and determined the temporary complexity of each 

algorithm. This robustness test will be performed on fringe images affected each time by a 

speckle noise of grain size varying between 1 x 1 and 5 x 5 pixels (Yu, 2024). 

The figure reports the PSNR corresponding to each algorithm for a noise-free image and 

five images noisy by a speckle of size respectively 1x1, 2 x 2, 3 x 3, 4 x 4, and 5x5. As a 

comparison, fringe images reconstructed on the basis of 5 x 5 noise by the three algorithms 

are illustrated in Figure 14 (Li, 2024). 
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Figure 13. Evolution of the PSNR quality criterion as a function of the speckle gain size for the three wavelet 

crest estimation algorithms. 

 

 

 

 

Figure 14. The reconstructed images according to the three peak detection algorithms, respectively, from top 

to bottom, the direct maximum algorithm, the Liu algorithm, and that of the Marseille group. 

 

We have verified that whatever the algorithm when the size of the speckle gains 

increases, the PSNR between the original image and the estimated image will decrease, but 

according to different issues (Zarch, 2024).  

Looking at Figure 13, we see that in the absence of noise, the three algorithms are very 

comparable since their respective PSNR values are in the same range. In the presence of 

noise, the PSNR values of each algorithm deviate, thus demonstrating a difference in 
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sensitivity to noise, Moreover, the direct maximum algorithm remains the easiest to 

implement and the least demanding in memory and computing time. It also provides a good 

result (see Figure 14 a) in comparison with the Marseille Group algorithm. The latter 

generates a more marked loss in PSNR as the size of the speckle grains increases (see Figure 

13 and Figure 14 c) It is also important to mention that this algorithm has major drawbacks 

related to the choice of tolerance and the initialization value an. Indeed, low tolerance values 

can cause a divergence of the algorithm (especially in case of noise) or in the best case, an 

increase in the calculation time without improving the accuracy of the results. In addition, 

the choice of the initialization value a remains a weak point of this algorithm. Indeed, the 

value of ao can be responsible for the appearance of edge effects, as shown in Figure 12(c). 

 The solution we have considered to remedy this problem is to initialise the 

calculations by a value of ao taken from the scalogram of the modules where the peak is 

clearly observable as a clear band. These drawbacks constitute an obstacle to the automation 

of the Marseille Group algorithm for the extraction of the phase or the filtering of images in 

real time. 

Liu's algorithm remains probably the most robust, as justified by the evolution of the 

PSNR (Figure 13) , The direct maximum algorithm gives a PSNR close to that obtained by 

Liu's algorithm for speckle grain sizes smaller than 2 x 2 pixels On the other hand, a clear 

difference appears between these two algorithms when the speckle grain size exceeds 2 x 2 

pixels. This same observation was reported by Liu et al. for moiré fringe images . 

Moreover, Liu's algorithm is not perfect. Indeed, when the noise becomes too large the 

number of candidates to form the optimal peak increases, which makes it difficult to 

minimize the cost function and causes an increase in time complexity Of course, these two 

drawbacks make real-time processing of fringe images for thermal metrology difficult. 

Conditioning and choice of the wavelet 

Whatever the algorithm adopted for the exploitation of the TO scalograms, the user 

intervention remains minimal and only slightly affects the quality of the result in 

comparison with the demodulation by the Fourier transform. The supervision of the 

algorithm is limited to the following two data: 

1. The choice of the scale interval [Amin, Amax] as well as its sampling step Aa to scan 

both the low and high frequencies of the analysed signal. 

2. The choice of the mother wavelet and its parameters. 

The choice of the scale interval can be done by trial and error or by the preliminary 

calculation of the frequency spectrum of the signal in order to designate a useful frequency 

band [fmin, fmax] and to link it to the scale interval [amin, Amax]. Rigorously establishing 

such a relationship can be done for certain mother wavelets, such as the Morlet wavelet.  

Indeed, this wavelet has a very explicit central frequency fc The scales can then be 

expressed exactly as a function of this frequency and those of the signal. As for determining 

the appropriate sampling step Aa, the aim is to optimise the calculation time on the one 

hand and to reduce the aliasing effect in the peak on the other hand, as we will see later. 
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For the second point, the choice of the mother wavelet is decisive. Given the 

spectacular development of signal processing by wavelet theory, there are currently a 

variety of analyzing mother wavelets; however, there is no rigorous rule that facilitates the 

choice between them Let us say that the general approach consists of testing a few of them 

to decide the mother wavelet suitable for the processed signal In the context of this thesis, 

we have chosen to test ven mother wavelets to analyse fringe images. 

The shapes of these wavelets and their scalograms of the respective modules are 

shown in Table 4, We compared the results of each of these mother wavelets. 
 

 

For this, we considered two criteria, one qualitative and the other quantitative, to 

decide on these wavelets regarding the adequacy of the processed signal. The sharpness, 

applicability, as well as shape of the peak, must be taken into consideration by a simple 

visualization of the scalogram of the modules Then, we compare the PSNR between the 

recalculated image and the reference one 

Table 4. Comparison between the different mother wavelets used for calculating the 

wavelet transform of the intensity line located at z = 400 pixels of the image of the theoretical 

fringes in Figure 2. The first column shows the name of the mother wavelet and its different 

parameters; the second is reserved for graphical representations of its real and imaginary 

parts, while the last presents the scalograms of the moduli of the crest. 
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Phase unfolding 

Position of the problem 

In this extension, it is not the numerical study or the way of implementing the unfolding 

algorithms that concerns us, but rather the practical analysis of the unfolding problem (ID 

or 2D) We will be content with an overview of the principle of each algorithm in focusing 

on the discussion of the quality of the results it provides. We will consider the ability of each 

algorithm to unroll the phase suitably and fairly, freeing itself from singularities that may 

arise due to the presence of obstacles (heating objects, for example) or parasitic spots outside 

the fringe figures (diffraction, optical aberrations, speckle, etc.). 

We also mention the singularity resulting in particular from the addition of an 

additional poorly chosen reference phase. In other words, we will examine the ability of the 

algorithm to distinguish between a "true discontinuity" and a "false discontinuity." We will 

see that certain 2D algorithms make it possible to circumvent these singularities without 

affecting the precision of the unrolling of the phase. 

Itoh Condition 

All the algorithms used in this thesis are based on the Itoh algorithm, which is local. The 

most natural approach to unfolding the phase is to proceed pixel by pixel. We denote by 

φw(n) and φu (n) the discrete phases respectively discontinuous and continuous, and n the 

pixel number. To remove the discontinuities of φw(n), we must add or subtract 2n at each 

point, giving rise to a sudden variation of the phase. 
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 However, the continuous phase can itself contain sudden variations between two pixels 

due to the singularity problems mentioned above. These variations may interfere with the 

unfolding algorithm and thus alter the result. The Itoh condition stipulates that between 

two adjacent pixels, we cannot go from a dark fringe to a bright fringe and vice versa. The 

following relation translates the Itoh condition: 

Ιφυ (η) – φυ (η - 1) | <π           (12) 

Failure to verify condition (12) is commonly referred to as a violation of Itoh's condition. 

It is worth pointing out a certain absurdity of this condition since in reality the continuous 

phase is not known a priori. 

 

Unfolding algorithms 

For the study of the unfolding problem, several algorithms exist in the literature. We have 

selected three: Itoh's algorithm  Goldstein's and Arevalillo Herráez's 

 

ID algorithm 

Itoh's algorithm can be summarized by saying that phase unfolding is obtained by 

integrating the discontinuous phase. This procedure can be performed numerically using 

the following algorithm:  

φυ(η) = φω(η) + 2k(η)π       (13) 

With: 

k(n)    =  0, if φω(n) - φω (η – 1) ≤ π 

            +1,  if [w(n) - φω (η - 1)] > -π 

             -1, if [φw(n) - φω (η – 1)] < π  (14) 

 

The algorithm (14) is encoded in Matlab by the “unwrap” function according to the 

Anderson technique, The phase unwrapping path according to this algorithm is unique and 

long, thus promoting the propagation of errors due to the noise mentioned above . 

 

 

Itoh's algorithm can be run in 2D by unfolding horizontally first. The resulting phase is then 

unfolded vertically. In this variant, the initial unfolding direction (horizontal or vertical) can 

be reversed. 
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Goldstein's 2D algorithm 

The basic principle used by this algorithm remains the same as that of Itoh but with a 

two-dimensional approach developed by Goldstein. The difficulty lies in the fact that in 2D 

we are faced with several paths.  

Thus, depending on the unfolding path followed, the final result will not always be 

the same. Also, it is necessary to find a mathematical artifice or something else to avoid any 

propagation of error during unfolding. 

In summary, Goldstein's algorithm starts from an initial point and proceeds by 

integrating the folded phase on well-chosen paths using the notion of residues, whose 

pseudo-code is given in the book by Ghiglia and Pritt If we denote by ow(n,m) the two-

dimensional discrete phase, the residues are calculated in the following manner by referring 

to Figure 15: 

Δ₁ = φω (η + 1, m) φw (n, m) 

Δ₂ = φω(n + 1, m + 1) φw (n+1, m) 

Δ₃ = φw (n,m+1)(n+1, m + 1) 

Δ₁ = φω(n,m) qw(n,m+1)        (15) 

 

Figure 15. Calculation of residuals 

Figure 15 shows how the residuals are calculated. 

Σ=E [Σ⁴j = 1 Δj / 2π ]    (16) 

The number ∑ called charge residues can only be 0, 1, or 1. For those passionate about 

mathematical rigor, they will find the demonstration of this result in reference 

The basic idea of Goldstein's algorithm is as follows: When [ Σ ] is equal to 1, between 

the four pixels concerned there is a noise that risks affecting the phase if it is taken into 

account in the unfolding procedure. Barriers must be placed on the unfolding path in such 

a way as to avoid the pixels giving rise to these singularities. In other words, the unfolding 

path must be chosen in the sense where the residual ∑ is zero.  

The arrangement of these barriers must be done by looking for the configuration that 

minimises the total length of these barriers. The barriers represent on the phase map the 
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segments of "defective" pixels that must be avoided in the unfolding procedure. The latter 

will be done quite simply by applying Itoh's algorithm. 

Residues are associated with locations in the image where the aliased phase varies 

sharply and abruptly between two neighbouring pixels. This variation can only be related 

to local noise of any kind that manifests itself as an inconsistency with the phase values at 

neighbouring pixels. 

Consider each of the following three sets of four pixels: 

 

In the first group, the sum of the differences calculated in a clockwise direction is 0. In 

this case, we are therefore not in the presence of local noise since the number ∑ is zero.  

In the second group, the number ∑ is +1, which shows the presence of a local error 

called positive residual. The last group leads to a residual of 1, thus showing the presence 

of a local error associated with a negative residual. When a positive or negative residual is 

introduced into a data set, it propagates and provides completely false unfolding results. To 

avoid this error propagation, it is not enough to exclude the pixels associated with the 

positive and negative residual, but to connect each positive residual (+1) to a negative 

residual (-1) by a barrier  During unfolding, we choose an integration path that does not 

cross barriers. (Appendix B includes an illustrative example of how this algorithm works). 

Arevalillo Herráez 2D algorithm 

This algorithm is based on the division of the map representing the folded phase 

distribution and the recursive use of the Itoh algorithm. The principle is relatively simple It 

consists first in dividing the folded phase image into four square images, then unfolding 

them independently, and finally connecting them. To connect the images, the Itoh algorithm 

is applied to the pixels, forming the boundaries separating two contiguous unfolded images. 

This procedure is repeated until elementary images of size 2 x 2 pixels are reached.  

The unfolding of an elementary image is very simple, One of the four pixels is chosen 

as a starting point and the Itoh algorithm is applied to the neighboring pixels in a cyclic 

sense. In Appendix (B), the diagram of the Arevalillo Herráez algorithm is given. 

The test of the three algorithms discussed above will be carried out on the two-

dimensional phase (Figure 16) whose expression is given by (1) and which has been folded 

using the arctan2(x) function of Matlab. 

 

 

 

 

 



Physical Sciences, Life Science and Engineering  Volume: 2, Number 1, 2024 20 of 24 

 

 

https://digital-science.pubmedia.id/index.php/pslse 

 

 

Figure 16. (a) Unfolded phase (b) Folded phase by calculating arctan2(x) of the unfolded phase. 

 

Test without violation of the Itoh condition 

Table 5 summarizes the test results of the three algorithms in terms of mean square 

error σ. It can be seen that if the signal to be unfolded varies slowly, in the sense that the 

phase differences between two contiguous pixels in a direction are less than π, the three 

algorithms manage to detect in the folded phase the discontinuities of mathematical origin 

as justified by the low value σ ≈ 0 in Table  5. 

Table 5. Mean square errors resulting from applying the three algorithms to unfold the phase of Figure 16 b. 

 

 

Test with violation of Itoh's condition 

To achieve such a situation, a linear profile reference phase was added to the initial 

phase. The result of this addition is shown in Figure 17. To better appreciate the effect of 

this addition, we considered a line of the phase image and applied it as an example to the 

Itoh ID algorithm to unfold the phrase. We note from the results represented by Figure 18 

that adding a line of slope 2v, too steep, will violate the Itoh condition and cause 

discontinuities to appear in the unfolded phase. This is clearly shown in Figure III-20 which 

gives the 2D mapping of the phase unfolded by the Itoh ID algorithm. 

Table 6 compares the errors and the computation times to unfold the phase of the 

figure by the three algorithms studied. The 2D version of the Itoh algorithm allows to 

considerably improve the unfolding quality compared to the ID version. The use of the 

Arevalillo Herráez algorithm remains the most precise with a relatively short computation 

time. On the other hand, the Goldstein algorithm leads in this case to a less precise result 

than that of the 2D Itoh algorithm. This can be explained by the fact that the simulated phase 
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has only jumps in the horizontal direction. Thus, the residues can cancel each other out two 

by two, leading to very few barriers to unrolling the phase correctly. 

 

 

Figure 17:  Unfolded Phase 

 

 

 
Figure 18. (a) Initial phase (b) linear phase (c) resultant phase 
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Figure 19. Phase unfolded by Itoh's algorithm which resembles the folded phase. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20. Image of the phase unfolded by the Itoh ID algorithm 

Table 6. Root mean square deviation values and execution times on a laptop equipped with a 2Ghz Core™ 2 

Duo microprocessor and 16GB SDRAM memory. 
 .GB size 4 

 

 

Conclusion 

This research concludes the inventory of our toolbox for the analysis of fringe images. 

The algorithms intended for this purpose have been explained and detailed by applying 

them to an image of fringes synthesized from an analytical expression. 

Becoming an increasingly broad field of activity, it requires new means of control that 

are more efficient, more effective, and low cost. The most popular techniques in this field 

are largely based on sophisticated optical equipment such as Mach-Zehnder, Michelson, etc. 

On the other hand, the use of holographic interferometry and moiré deflectometry has made 

it possible to simplify the hardware as much as possible and to transfer the load to the 

intelligent and precise image processing algorithms offered by these techniques. The 

objective of this thesis is to develop a whole chain of algorithms allowing the tomographic 

reconstruction of the temperature field of an axisymmetric transparent medium. The entity 

of the study carried out consists in proposing at least three classes of algorithms allowing 

access to information on the temperature field tomography. 

We have attributed a large part to the wavelet crest estimation algorithms. This led us 

to explain in a comparative manner three crest estimation algorithms: the direct maximum 
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algorithm, the Liu algorithm and finally the Marseille group algorithm. The calculation of 

the PSNR quality criterion reveals that the Liu algorithm is the most robust of the other two 

but this is at the expense of the computation time. This drawback led us to adopt the direct 

maximum algorithm which in our opinion achieves a compromise between precision and 

algorithmic complexity whether temporary or spatial. 

Regarding the phase unfolding step, we have presented in a comparative manner three 

algorithms namely: the Itoh ID and 2D algorithm, the Goldstein 2D algorithm and the 

Herráez 2D algorithm. This comparison shows that the Herráez algorithm provides very 

good results.  
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